The four adjacent digits in the $1000$-digit number that have the greatest product are $9 \times 9 \times 8 \times 9 = 5832$.
73167176531330624919225119674426574742355349194934 96983520312774506326239578318016984801869478851843 85861560789112949495459501737958331952853208805511 12540698747158523863050715693290963295227443043557 66896648950445244523161731856403098711121722383113 62229893423380308135336276614282806444486645238749 30358907296290491560440772390713810515859307960866 70172427121883998797908792274921901699720888093776 65727333001053367881220235421809751254540594752243 52584907711670556013604839586446706324415722155397 53697817977846174064955149290862569321978468622482 83972241375657056057490261407972968652414535100474 82166370484403199890008895243450658541227588666881 16427171479924442928230863465674813919123162824586 17866458359124566529476545682848912883142607690042 24219022671055626321111109370544217506941658960408 07198403850962455444362981230987879927244284909188 84580156166097919133875499200524063689912560717606 05886116467109405077541002256983155200055935729725 71636269561882670428252483600823257530420752963450Find the thirteen adjacent digits in the $1000$-digit number that have the greatest product. What is the value of this product?
There's not too much to this problem. We can slide a window of length num_digits across the string, compute the product of digits in each window, and track the maximum. One optimization is to skip any window containing a '0' since its product will be zero.
const BIG_NUMBER =
"73167176531330624919225119674426574742355349194934" *
"96983520312774506326239578318016984801869478851843" *
"85861560789112949495459501737958331952853208805511" *
"12540698747158523863050715693290963295227443043557" *
"66896648950445244523161731856403098711121722383113" *
"62229893423380308135336276614282806444486645238749" *
"30358907296290491560440772390713810515859307960866" *
"70172427121883998797908792274921901699720888093776" *
"65727333001053367881220235421809751254540594752243" *
"52584907711670556013604839586446706324415722155397" *
"53697817977846174064955149290862569321978468622482" *
"83972241375657056057490261407972968652414535100474" *
"82166370484403199890008895243450658541227588666881" *
"16427171479924442928230863465674813919123162824586" *
"17866458359124566529476545682848912883142607690042" *
"24219022671055626321111109370544217506941658960408" *
"07198403850962455444362981230987879927244284909188" *
"84580156166097919133875499200524063689912560717606" *
"05886116467109405077541002256983155200055935729725" *
"71636269561882670428252483600823257530420752963450"
function product_of_digits(str)
prod = 1
for c in str
digit = parse(Int, c)
prod *= digit
end
return prod
end
function largest_product_in_series(num_digits)
max_product = 0
max_substring = ""
for i in 1:(length(BIG_NUMBER) - num_digits + 1)
substring = BIG_NUMBER[i:(i + num_digits - 1)]
if '0' in substring
continue
end
product = product_of_digits(substring)
if product > max_product
max_product = product
max_substring = substring
end
end
return max_product, max_substring
end
Calling largest_product_in_series(13) returns the solution in 20.751 μs. We can also run the example from the problem description, largest_product_in_series(4), which returns $(5832, \text{"9989"})$ in 19.800 μs.
The algorithm runs in $\mathcal{O}(nk)$ time where $n$ is the length of the string and $k$ is the window size. The early termination on zeros provides a constant-factor speedup but doesn't change the asymptotic complexity.