The quantum coin toss—observation of quantum superposition in a mesoscopic coin

Ali Ramadhan

December 5, 2016

University of Waterloo

Macroscopic quantum phenomena

• E.g. superconductivity, Bose-Einstein condensation, superfluidity, quantum Hall effect.

Quantum superpositions

• Usually just for electrons, photons, atoms, etc.

Juffmann et al, Nature Nanotechnology 7, 297-300 (2012).

Quantum phenomena in macroscopic optomechanical systems

• Have been cooled to their ground state and superposition states have been

prepared.

Friedman et al, *Nature* **406**, 43-46 (2000).

O'Connell et al, *Nature* **464**, 697-703 (2010).

Chan et al, *Nature* **478**, 89-92 (2011).

The quantum coin toss

• What about something like a coin?

Trapping and cooling a coin

• Use counter-propagating Lageurre-Gauss beams to trap and cool both

translational and rotational motion.

Maragò et al, Nature Nanotechnology 8, 807-819 (2013).

Flipping the coin: preparation of the quantum superposition state

- 1. Shine single-photon Fock state from parametric down conversion onto cavity.

 Only let half of it in!
- 2. Drive cavity with a red-detuned laser to swap the state of the light inside the cavity with the mechanical motional state.
- 3. You now have $\frac{1}{\sqrt{2}}\left(\left|\tilde{0}\right\rangle\left|H\right\rangle+\left|\tilde{1}\right\rangle\left|T\right\rangle\right)$.
- 4. Perform balanced homodyne measurement switch off driving field.
- 5. You now have $|\psi\rangle=c_H\,|H\rangle+c_T\,|T\rangle$. Pick experimental conditions such that $c_H=c_T$ if you want.

Romero-Isart et al, *New Journal of Physics* **12**, 33015 (2011).

Heads or tails? Measurement of the quantum superposition state

- $\langle \hat{z} \rangle$ oscillations indicate a successful preparation of a quantum superposition state.
- This lets you check for a successful preparation but doesn't actually tell you whether you got heads or tails.
 - Note that $|T\rangle$ will be doubly degenerate.

Conclusion: Why does this proposal fail?

- Relied on too many other proposals. Everything was just about doable with current technology.
- Authors refers to multiple publications in preparation that did not pan out.
- Experimental realizations are more difficult than proposals make them sound.
- Verdict: maybe quantum superpositions of macroscopic systems is possible but you probably won't see one with your own eyes.
 - If you could see it with the naked eye, you would be perturbing the system...