
Near-Inertial Waves and Turbulence Driven by the Growth of Swell

GREGORY L. WAGNER,a GREGORY P. CHINI,b ALI RAMADHAN,a BASILE GALLET,c AND RAFFAELE FERRARI
a

aEarth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
b Integrated Applied Mathematics and Mechanical Engineering, University of New Hampshire, Durham, New Hampshire

c Service de Physique de l’Etat Condense, Commissariat á l’Energie Atomique Saclay, CNRS UMR 3680, Universitè Paris-Saclay,
Saint-Aubin, France

(Manuscript received 30 July 2020, in final form 18 December 2020)

ABSTRACT: Between 5% and 25% of the total momentum transferred between the atmosphere and ocean is transmitted

via the growth of long surface gravity waves called ‘‘swell.’’ In this paper, we use large-eddy simulations to show that swell-

transmitted momentum excites near-inertial waves and drives turbulent mixing that deepens a rotating, stratified, turbulent

ocean surface boundary layer. We find that swell-transmitted currents are less effective at producing turbulence and mixing

the boundary layer than currents driven by an effective surface stress. Overall, however, the differences between swell-

driven and surface-stress-driven boundary layers are relatively minor. In consequence, our results corroborate assumptions

made in Earth system models that neglect the vertical structure of swell-transmitted momentum fluxes and instead pa-

rameterize all air–sea momentum transfer processes with an effective surface stress.
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1. Introduction

Winds flowing over the ocean excite a spectrum of surface

gravity waves ranging from ripples to kilometer-long swells.

Beneath persistent winds, the statistics of the shortest gravity

waves saturate in a stationary balance between wind input,

nonlinear interactions between wave components, and dissi-

pation and breaking (Phillips 1985). The saturated fraction of

the wave spectrum is called the ‘‘equilibrium range.’’ Longer

waves, or ‘‘swell,’’ are out of equilibrium by definition and

therefore grow along the fetch of the wind.

Much of the momentum input into the ocean is transferred

via form stress acting on the faces of equilibrium range waves

(Grare et al. 2013; Melville 1996). The shortness of equilibrium

range waves and the accompanying effects of wave breaking

motivate the parameterization of air–sea momentum transfer

as an effective stress imposed at the air–sea interface. Yet some

fraction of the total momentum transferred between the at-

mosphere and ocean—perhaps as small as 5% in conditions

typical to the laboratory and field experiments (Melville 1996),

or as large as 25% beneath hurricane-strength winds (Fan et al.

2009)—is not transferred to the ocean at or just beneath the

surface, but is instead distributed in depth by pressure gradients

associated with the growth of swell. In this paper, we address

the effects of the ‘‘swell-mediated’’ fraction of the total mo-

mentum flux on turbulent ocean surface boundary layers.

Swell mediates momentum transfer between the atmo-

sphere and ocean when swell is resonantly excited by coherent

viscous stresses (Longuet-Higgins 1969) or a coherent com-

ponent of the atmospheric pressure spectrum at the sea sur-

face. We illustrate this process by considering the oceanic

response to the traveling atmospheric pressure disturbance
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where r0 is an ocean reference density, P is the ocean-side

kinematic pressure, and g is gravitational acceleration. Over an

ocean at rest, the pressure field in (1) excites an infinite,

monochromatic surface wave field with wavenumber k and

frequency s5
ffiffiffiffiffiffi
gk

p
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In (2) we define the time-dependent swell amplitude a(t). If pa
vanishes after some time t 5 T, the outcome is an infinite,

steadily propagating wave field with amplitude a(T). This out-

come was first investigated in a seminal paper by Stokes (1847).

The depth-integrated, swell-averaged x-momentum budget

for a nonrotating and inviscid ocean reveals the air–sea mo-

mentum transfer generated by (1),
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where h is a depth at which momentum fluxes vanish, and the

angle brackets h�i denote a simultaneous average over hori-

zontal directions and a time average over the rapid oscillations

of swell. The time derivative in (3) is the rate of change of

depth-integrated momentum over time scales much longer

than the oscillation of the surface wave field.

The term h pa›xsi on the right of (3) describes atmospheric

pressure forces impacting the tilted ocean surface and is called

‘‘form stress.’’ With the pressure field in (1) and surface dis-

placement in (2), we find that momentum is transferred to the

ocean by form stress at the rate
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A remarkable aspect of this scenario, first described by Stokes

(1847), is that the form stress in (4) forces an irrotational cur-

rent whose average velocity at a fixed position—the Eulerian-

mean velocity hui—is zero. In other words, (4) acting on a

nonrotating ocean forces a current with hui 5 0, and
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uS(z, t)5 e2kza(t)
2
sk , (5)

is called the ‘‘Stokes drift’’ (Bühler 2014). The rate of change of
the depth-integrated Stokes drift (5) is equal to the air–sea

momentum transfer due to form stress in (4).

In this paper, we numerically simulate the response of a

rotating, stratified, turbulent boundary layer to the resonant

atmospheric pressure forcing (1), as well as mixtures of effec-

tive surface stress and swell-mediated form stress with similar

total momentum input. In these more general scenarios, the

Eulerian-mean velocity is nonzero. However, the rate of

change of the Stokes drift in (5) still measures the part of the

air–sea momentum transfer rate associated with swell-coherent

form stress. To form the total momentum budget, we define the

complexified total boundary layer momentum and depth-

integrated Stokes drift,

UL(t)5
def
�ðs

2h

u1 iy dz

�
, and US(t)5

def
ð0
2h

uS 1 iyS dz , (6)

and parameterize the net air–sea momentum transfer rate

with t 1 ›tU
S, where t is a complexified effective surface

stress that models the net effect of momentum transfer

through swell-incoherent viscous stresses, form stress acting

on equilibrium range waves, and the concomitant effects of

wave breaking. The superscript ‘‘L’’ in (6) stands for

‘‘Lagrangian-mean,’’ whose agency is discussed in section 2.

The governing equation for the total momentum UL, which

may be derived either from the rotating Navier–Stokes

equations beneath a free surface, or from the Craik–

Leibovich wave-averaged Boussinesq equations (9)–(11)

that form the basis for the simulations in this paper (Kukulka

et al. 2010), is

›
t
UL 1 ifUL 5 t1 ›

t
US , (7)

where f is the Coriolis parameter.

Ursell and Deacon (1950), Hasselmann (1970), Pollard

(1970), and Eq. (7) show that, in the presence of rotation, the

current that arises beneath a growing monochromatic wave

field is not steady as in Stokes’s (1847) problem, but instead

rotates inertially. A surprising result of our numerical simula-

tions is that, due to three-dimensionality, stratification, and

preexisting turbulence, swell-transmitted flows both rotate in-

ertially and transfer energy to turbulence via shear production,

thus mixing and deepening the boundary layer. This is in

striking contrast to the laminar, unidirectional flow that

arises in the irrotational case analyzed by Stokes (1847) and

exemplified by (5). The evolution of a turbulent boundary

layer in our most basic case beneath a growing surface wave

field with t5 0 is depicted in Fig. 1. Setting t5 0 distinguishes

our work from Kukulka et al. (2010), Sullivan et al. (2012),

and Large et al. (2019) that investigate time-dependent

mixing processes due to a combination of time-dependent

t and ›tU
S, and which do not separately investigate the effects

of the ‘‘additional’’ momentum input by nonzero ›tU
S.

Section 2 introduces the wave-averaged Boussinesq equa-

tions and discusses some of their basic properties. In section 3,

we continue beyond the scenario depicted in Fig. 1 to inves-

tigate the qualitative differences between the mixing and

deepening of turbulent boundary layers forced either by an

effective surface stress t or swell growth via ›tU
S. We con-

clude that depth-distributed forcing by ›tU
S produces less

mixing than forcing by t, because ›tU
S drives currents with

weaker shear that relinquish less energy to turbulence. In

shallow boundary layers, moreover, some of the swell-

transmitted atmospheric forcing acts directly on laminar

near-inertial motions below the base of the boundary layer.

We emphasize that these observations pertain to the interior

effects of boundary layer forcing mechanisms associated with

the shear production of turbulence, rather than the surface-

concentrated effects of wave breaking, which are neglected in

our large-eddy simulations.

Langmuir turbulence is not the main focus of this work.

Nevertheless, the wave-catalyzed organization of turbulent

motions into the coherent structures of Langmuir turbulence

(Sullivan and McWilliams 2010; D’Asaro et al. 2014) features

prominently in our numerical solutions. In section 3e, we

observe that the coherent Langmuir turbulence structures

tend to align with the Lagrangian-mean shear, consistent with

Sullivan et al.’s (2012) results beneath realistic hurricane

winds and waves. After the surface stress dies down, however,

the orientation of the coherent structures decouples from the

weakening Lagrangian-mean shear and locks onto ŷ, the axis

of the effective background vorticity associated with the

x̂-propagating swell. We suggest an explanation for this

phenomenon in the context of the Lagrangian-mean formu-

lation of the wave-averaged Boussinesq equations.

Section 4 investigates the importance of swell growth

rate in determining initial conditions for large-eddy simu-

lations, and subsequent deepening of turbulent boundary

layers under steady surface stress and steady surface waves.

Section 5 concludes by discussing how our results may

corroborate, a posteriori, some assumptions that underpin

the parameterization of atmosphere–ocean momentum

transfer in general circulation models. Appendix A de-

scribes the large-eddy simulation software ‘‘Oceananigans.jl,’’

appendix B provides the vector calculus identities required to

manipulate the Eulerian-mean Craik–Leibovich equations

into their Lagrangian-mean form, and Table 1 lists the large-

eddy simulations used in this work.

2. The surface-wave-averaged Boussinesq equations

The Lagrangian-mean velocity beneath surface gravity

waves is
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uL 5
def

uE 1 (~j � =)~u|fflfflfflffl{zfflfflfflffl}
5
def

uS

, (8)

where ~u is oscillatory velocity associated with waves, ~j5 (~j, ~h, ~z)

is the wavy zero-mean particle displacement defined via ›t~j5 ~u,

the overline ( ) is a running Eulerian time average—a

‘‘wave average’’—over surface wave oscillations, uE 5
def

u is the

Eulerian-mean velocity, and uS is the Stokes drift. The

Lagrangian-mean velocity uL(x, y, z, t) advects mass, momentum,

and vorticity, and its variance (1/2)juLj2 is the wave-averaged

kinetic energy.

The wave-averaged Boussinesq equations in an f-plane

tangent to and rotating with the ocean surface and cast in terms

of uL are (Craik and Leibovich 1976; Huang 1979; Leibovich

1980; Holm 1996; Suzuki and Fox-Kemper 2016; Seshasayanan

and Gallet 2019)

FIG. 1. Currents and turbulence beneath forced surface waves with the time-dependent Stokes drift uS 5 e2kza2k
ffiffiffiffiffiffi
gk

p
(12 e2t2/2Tw )x̂with

wavenumber k 5 2p/100m21, growth time scale Tw 5 4 h, equilibrium amplitude a5 2m, and gravitational acceleration g5 9.81m s22.

(left) Contours of wL and (right) the horizontally averaged horizontal velocity components huLi and hyLi are shown after half an

inertial period at t5p/f. The tendency of the depth integral of the Stokes drift, ›tU
S 5

Ð 0
2h
uS dz, is a stress accompanying the growth

of swell that forces a vertically sheared inertial oscillation and drives turbulent mixing and boundary layer deepening. More details

about the physics, numerics, and software can be found in sections 2 and 3, in Table 1, and at https://github.com/glwagner/

WaveTransmittedTurbulence.jl.

TABLE 1. Simulations 1–8 are reported in section 3 and simulationsA–E are reported in section 4. Simulations 1–5 andA–E use 128m3
128m 3 64m domains with 256 3 256 3 256 grid points and uniform 0.5m 3 0.5m 3 0.25m grid spacing in x, y, z. Simulations 6–8 use

192m3 192m3 96m domains with 2563 2563 384 grid points and uniform 0.75m3 0.75m3 0.25m grid spacing in x, y, z. The effective

wave-forced stress during the growth of 100-m wavelength, 1-m amplitude deep water waves on a time scale of Tw 5 4 h is tw 5 2.72 3
1025 m2 s22. The wind stress prescribed by McWilliams et al. (1997) is tMSM 5 23.72 3 1025 m2 s22. Simulation 1 is initialized with

uL 5 1026 3 ez/2xu(x, y, z)(Dzqzjt50)
1/3 and b5N2z1 1026 3 ez/2xb(x, y, z)N

2Dz, where each xc is a Gaussian-distributed, unit standard

deviation random field for each c 2 (uL, yL, wL, b), Dz 5 0.25m is the vertical grid spacing, and N2 5 1026 s22 is the initial buoyancy

gradient. Simulations 2–7 are initialized from simulation 1 at t 5 p/f with Coriolis parameter f 5 1024 s21. Simulations A–E use

uS
0 5 0:068m s21 and k5 0.105m21 The simulation data were generated with Oceananigans (https://github.com/CliMA/Oceananigans.jl).

Instructions for reproducing the results are at https://github.com/glwagner/WaveTransmittedTurbulence.jl.

ID Simulation name Stokes drift Surface conditions Domain size Grid spacing

1 Weak spinup uS 5 0 qz 5 5 3 10210 m2 s23 Regular 0.5m 3 0.5m 3 0.25m

2 Weak growing waves uS 5 uS
eq(z)(12 e2t2/2T2

w ) Free slip, insulating Regular 0.5m 3 0.5m 3 0.25m

3 Weak surface stress, no waves uS 5 0 T xz 52twe
2t2/2T2

w t/Tw Regular 0.5m 3 0.5m 3 0.25m

4 Weak surface stress, steady waves uS 5 uS
eq(z) T xz 52twe

2t2/2T2
w t/Tw Regular 0.5m 3 0.5m 3 0.25m

5 Weak surface stress, growing waves uS 5 uS
eq(z)(12 e2t2/2T2

w ) T xz 52twe
2t2/2T2

w t/Tw Regular 0.5m 3 0.5m 3 0.25m

6 Strong spinup uS 5 0 qz 5 5 3 10210 m2 s23 Large 0.75m 3 0.75m 3 0.25m

7 Strong growing waves uS 5 4uS
eq(12 e2t2/2T2

w ) Free slip, insulating Large 0.75m 3 0.75m 3 0.25m

8 Strong surface stress, no waves uS 5 0 T xz 524twe
2t2/2T2

w t/Tw Large 0.75 3 0.75 3 0.25m

9 Strong surface stress, steady waves uS 5 4uS
eq(z) T xz 524twe

2t2/2T2
w t/Tw Large 0.75m 3 0.75m 3 0.25m

A Reference uS 5 0 T xz 5 tMSM Regular 0.5 3 0.5 3 0.25m

B 13 excited uS 5 e2kzuS
0 T xz 5 tMSM Regular 0.5m 3 0.5m 3 0.25m

C 13 resting uS 5 e2kzuS
0 T xz 5 tMSM Regular 0.5m 3 0.5m 3 0.25m

D 43 excited uS 5 e2kz4uS
0 T xz 5 tMSM Regular 0.5m 3 0.5m 3 0.25m

E 43 resting uS 5 e2kz4uS
0 T xz 5 tMSM Regular 0.5m 3 0.5m 3 0.25m
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›
t
uL 1 (uL � =)uL 1 (f ẑ2=3uS)3uL 1=p

5bẑ2= � T 1 ›
t
uS , (9)

›
t
b1uL � =b52= � q , (10)

= � uL 5 0, (11)

where p is Eulerian-mean kinematic pressure, b is Eulerian-

mean buoyancy, f is the Coriolis parameter, and T and q are

the stress tensor and buoyancy flux due either to molecular

diffusion or a subfilter turbulent diffusion model for large-eddy

simulation. We show how (9)–(11) are derived from the

Eulerian-mean form of the Craik–Leibovich equations, and how

they are connected to the generalized Lagrangian-mean equa-

tions derived by Andrews and McIntyre (1978) in appendix B.

Equations (9)–(11) are an asymptotic approximation of the

Navier–Stokes equations beneath a small amplitude and

weakly modulated surface wave field. In particular, (11)

neglects a term relevant for time-dependent swell and asso-

ciated with divergence of the vertical component of the

Stokes drift. If accounted for, this vertical divergence would

lift the mean position of each fluid parcel by (1/2)a2ke2kz as

the swell amplitude a increases [see Mcintyre (1981) and

Eq. (3.7) in Longuet-Higgins (1986)]. In the cases considered

in this paper, however, the vertical velocity associated with this

mean vertical displacement is miniscule: for example, the growth

of a5 2mamplitude swell withwavenumber k5 2p/100m21 lifts

the sea surface by just (1/2)a2k 5 0.12m over a period of 4 h.

Because the effect is so small, we neglect the vertical component

of the Stokes drift and prescribe wL 5 0 at z 5 0.

The momentum equation (9) is often written as a prog-

nostic equation for the Eulerian-mean velocity uE, both for

analysis (Craik and Leibovich 1976; Suzuki and Fox-Kemper

2016) and large-eddy simulation (Skyllingstad and Denbo

1995; McWilliams et al. 1997; Noh et al. 2004; Polton and

Belcher 2007; Harcourt and D’Asaro 2008; Yang et al. 2015).

We use the Lagrangian-mean velocity uL instead as our prognostic

variable for both numerical simulations and analysis. Using uL

explicitly identifies the role of atmospheric momentum forcing

transmitted via growing swell, and thus ›tu
S, in driving the tur-

bulent evolution of the simulated surface boundary layers in

section 3.

Prescribing uS(x, t) in (9) determines the effects of swell on

the evolution of the Lagrangian-mean momentum uL. Vertical

fluxes of horizontal momentum into uL through saturated

surface waves in the equilibrium range are prescribed through

stress boundary conditions on T xz and T yz at z 5 0. Buoyancy

fluxes are prescribed through qzjz50. The complexified down-

ward surface stress in (7) is t5
def

2 T xz 2 iT yzjz50.

a. Wave-averaged effective background vorticity

The term

(f ẑ2=3uS)|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
5
def

Vy

3uL , (12)

appears in the momentum equation (9), where f ẑ is the plan-

etary vorticity and = 3 uS is the surface wave pseudovorticity.

As discussed by Bühler (2014) in their section 11.3.2, (12)

means that the effective background vorticityVy is advected by

the Lagrangian-mean velocity uL. In other words, the total

vorticity is

V5
def

Vy 1=3 uL 5 f ẑ1=3 (uL 2 uS)|fflfflfflfflfflffl{zfflfflfflfflfflffl}
5uE

, (13)

in the sense that = 3 (9) with b 5 0 and T 5 0 is

›
t
V1 (uL � =)V5 (V � =)uL . (14)

Equation (14) resembles the usual vorticity equation for a ro-

tating fluid, except that V stands for vorticity rather than

f ẑ1=3uL. While uL transports mass, momentum, and vor-

ticity, the wave-averaged deviation from planetary vorticity is

= 3 uE, rather than = 3 uL. This altered relationship between

momentum and vorticity encapsulates the dynamical effect of

surface waves on the evolution of uL. We use the interpretation

of Vy as an effective background vorticity to explain some of

the phenomena observed in our large-eddy simulations in

section 5.

b. Wave-averaged kinetic energy

The conservation law for volume-integrated wave-averaged

kinetic energy, (1/2)juLj2, in unstratified flow with b 5 0 and

inviscid flow with T 5 0 follows from
Ð
uL � (9)dV,

d

dt

ð
1

2
juLj2 dV 5

ð
uL � ›

t
uS dV , (15)

where we have assumed there are no momentum fluxes

across the boundary of V. The total mean kinetic en-

ergy
Ð
(1/2)juLj2 dV is therefore conserved beneath steady

surface waves in unstratified, inviscid flow: there is no en-

ergy exchange between uL and steady surface waves.

Equation (15) shows that forced surface waves with non-

zero ›tu
S are a source of oceanic momentum and kinetic

energy.

Substituting uE 5 uL 2 uS into Eq. (15) yields a formula for

the volume-integrated Eulerian-mean kinetic energy (1/2)juEj25
(1/2)juLj2 1 (1/2)juSj2 2 uL � uS,

d

dt

ð
1

2
juEj2 dV52

ð
uS � ›

t
uE dV . (16)

Due to the term on the right of (16), Eulerian-mean kinetic

energy is not conserved in unstratified, inviscid flow beneath

steady surface waves.

3. Large-eddy simulations beneath growing swell

We consider the forced growth of two deep water swells with

amplitudes a5 1m and a 5 2m. Both swells grow over a time

scale of Tw 5 4 h, have 100-m wavelength, 8-s period, and the

horizontal Stokes drift profiles

uS(z, t)5 e2kza2k
ffiffiffiffiffiffi
gk

p|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
5
def

uSeq(z)

(12 e2t2/2T2
w ) , (17)
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where g 5 9.81m s22, k 5 2p/100m21, and a 5 1, 2m in (17)

are chosen (i) to illustrate the swell-mediated transmission of

momentum below a shallow boundary layer and (ii) to illus-

trate how stronger and thus deeper turbulent mixing increases

the effectiveness with which the swell-transmitted momentum

mixes the boundary layer.

The Stokes acceleration ›tu
S and total stress ›tU

S 5
Ð 0
2h
›tu

S dz

associated with (17) are

›
t
uS(z, t)5

te2t2/2T2
w

T2
w

uS
eq(z), and ›

t
US 5

te2t2/2T2
w

T
w

a2
ffiffiffiffiffiffi
gk

p
2T

w|fflfflfflffl{zfflfflfflffl}
5
def

tw

.

(18)

In (18), the equilibrium Stokes profile ueq(z) is defined in (17),

and tw scales the stress exerted on the ocean by the atmosphere

via forced swell. The maximum vertically integrated momen-

tum forcing of the boundary layer due to (17) is

max(›
t
US)5 ›

t
USj

t5Tw

5
t
wffiffiffi
e

p ’

(
1:653 1025 m2 s22 for a5 1m,

6:613 1025 m2 s22 for a5 2m,

(19)

similar to the stress exerted by 12-h-long wind pulses with

maximum speed 4 and 8m s21.1

a. Numerical methods and software

Our large-eddy simulations solve (9)–(11), where uL is the

resolved Lagrangian-mean velocity filtered to remove scales

smaller than the numerical grid scale. Spatial filtering moti-

vates downgradient approximations for the subfilter stress

tensor and diffusive flux,

T
ij
522n

e�
L

ij , and q
i
52k

e
›
i
b , (20)

in terms of the filtered strain tensor �L

ij 5 (1/2)(›iu
L
j 1 ›ju

L
i )

and filtered buoyancy gradient ›ib, where the indices i 5 (1, 2,

3) correspond to the Cartesian directions (x, y, z). The eddy

viscosity ne and eddy diffusivity ke in (20) are modeled with the

anisotropic minimum dissipation (AMD) formalism intro-

duced by Rozema et al. (2015) and Abkar et al. (2016), refined

byVerstappen (2018), and validated and described in detail for

ocean-relevant scenarios by Vreugdenhil and Taylor (2018).

Additional details about (20) are given in appendix A.

We solve (9)–(11) numerically with Oceananigans, a soft-

ware package developed by the authors in the Julia program-

ming language that runs on graphics processing units (GPUs)

(Bezanson et al. 2012; Besard et al. 2018). The simulations in

this paper use second-order finite volume spatial discretization,

second-order Adams–Bashforth time discretization, a pressure

projection method to ensure = � uL 5 0, and a fast method

based on the fast Fourier transform to solve the pressure

Poisson equation discretized with second-order differences

on a regular grid (Schumann and Sweet 1988). Oceananigans

code and documentation are hosted at https://github.com/

CliMA/Oceananigans.jl.

Our simulations are performed in two rectangular domains:

one ‘‘regular’’ size domain with dimensions 128m 3 128m 3
64m in x, y, z, grid spacings 0.5m 3 0.5m 3 0.25m, and res-

olution 2563, and a second ‘‘large’’ domain of dimension

192m 3 192m 3 96m with 0.75m 3 0.75m 3 0.25m grid

spacing and resolution 256 3 256 3 384. The domains are

horizontally periodic in x, y and have rigid top and bottom

boundaries, where we imposewL5 0. To absorb internal waves

radiated downward from the turbulent surface boundary layer,

we implement bottom sponge layers of the form

F
f
5 e2(z1H)/dm(fy 2f) , (21)

for each variable f 2 (u, y, w, b), where H is the depth of the

domain, m5 1/60 s21, ›5 4m, by5 N2z, and uy 5 yy 5 wy 5 0.

Each Ff is added to its corresponding equation in (9) and (10).

The simulations reported in this section and the rest of

this paper are listed in Table 1. Additional information,

including instructions for reproducing the simulations and

figures in this paper, are hosted at https://glwagner.github.io/

WaveTransmittedTurbulence.

b. Generation of a weakly turbulent initial condition

We use preliminary simulations to generate a shallow,

weakly turbulent boundary layer initial condition. The spinup

simulations are forced by weak cooling associated with an

upward flux of buoyancy at the surface,

q
z
j
z50

5 53 10210 m2 s23 . (22)

The spinup simulations are run for half an inertial period

until tspin 5 p/f, where f 5 1024 s21 is the Coriolis parameter.

The boundary layer depth at the end of the spinup is approx-

imately 8m. The horizontally averaged buoyancy and velocity

at tspin 5 p/f are shown in Fig. 2 and serve as initial conditions

for subsequent simulations reported in this section, which use

the same domain, resolution, and sponge layer configuration.

c. Near-inertial waves, turbulence, and boundary
layer deepening

Growing swells with the increasing Stokes drift profile in

(17) and equilibrium amplitudes a 5 1m and a 5 2m are im-

posed on the weakly turbulent end state of the spinup simu-

lation. The simulation time is reset to t5 0.We impose free slip

conditions on the horizontal velocity components and no

normal flow on the vertical velocity component at top and

bottom boundaries,

wL 5 ›
z
uL 5 ›

z
yL 5 0, at z5 0 and z52H . (23)

The boundary conditions (23) ensure there is no source of

momentum from the boundaries. We impose a no-flux condi-

tion on buoyancy at the top boundary,

1With drag coefficient Cd 5 1023, air density ra 5 1.225 kgm23,

seawater density rw 5 1035 kgm23, and ocean-side kinematic

stress parameterized with jtj’ (ra/rw)Cdu
2
a, we find t 5 1.65 3

1025 m2 s22 for ua 5 3.7m s21.
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›
z
b j

z50
5 0 . (24)

The bottom boundary condition ›zbjz52H 5 N2 and the bot-

tom sponge layer in (21) restore the near-bottom buoyancy

profile to N2z.

Figure 1 plots contours of vertical velocity after half an in-

ertial periodwLjt5p/f and depth profiles of the huLi and hyLi for
the strong swell case with equilibrium amplitude a5 2m.Near-

inertial shear excited by the growing surface wave field drives

turbulence that mixes and deepens the boundary layer. At the

same time, mixing is enhanced by the organization of turbulent

motions into the coherent structures of Langmuir turbulence,

which manifest in the left panel of Fig. 1 as elongated rolls of

alternating positive and negative vertical velocity oriented at

roughly 108 angles from the y axis. The penetration of vertical

motions through the stratified base of the boundary produces

smooth downward-emanating bulbs of vertical velocity at

around z 5 225m. Turbulent motions at the base of the

boundary layer excite downward-propagating internal waves.

The right panel shows the inertial rotation and downward

turbulent penetration of the swell-transmitted current in time.

d. Surface-concentrated versus depth-distributed stress

To isolate the relative effect of distributed momentum

forcing associated with ›tu
S in (18), we run three additional

simulations for a 5 1m and a 5 2m each with the boundary

condition

T
xz
j
z50

52›
t
US 52t

w

te2t2/2T2
w

T
w

, (25)

where tw is defined in (18). The boundary condition (25)

prescribes a 4-h pulse of surface stress. We combine (25) with

the Stokes drift profiles

1) uS 5 0 (surface stress, no swell), and

2) uS 5 uS
eq(z) for u

S
eq(z) in (17) (surface stress, steady swell).

For a 5 1m we also run a simulation forced by both the

surface stress in (25) and growing swell with uS(z, t) from (17),

which we call ‘‘surface stress, growing swell.’’ The cases de-

scribed in section 3c are called the ‘‘growing swell, no surface

stress’’ cases.

Figure 2 compares horizontally averaged profiles of buoyancy,

buoyancy gradient, horizontal speed
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
huLi2 1 hyLi2

q
, and vertical

velocity variance h(wL)2i after one inertial period at t 5 2p/f

in the four simulations that correspond to an equilibrium

wave amplitude of a 5 1m. The maximum value of the fric-

tion velocity,

max(u
+
)5
def

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max(›

t
US)

q
’ 4mms21 (for a5 1m) (26)

is used to normalize speed and vertical velocity variance.

Turbulent mixing produced by growing swell deepens the

boundary layer from z’28m at t5 0 to z’212m at t5 2p/f.

A substantial fraction of the total momentum is transmitted to

laminar, nonturbulent near-inertial motions below z ’ 212,

whose shear does not contribute to turbulent mixing. The fin-

gerprint of momentum transmitted by swell below the boundary

layer is the blue exponential tail in Fig. 2c below z’212m. The

boundary layers driven by surface stress are deeper, therefore,

because more of the mean kinetic energy transmitted to the

boundary layer is converted to turbulence.

Figure 2d shows the average vertical velocity variance

h(wL)2i. The case forced by surface stress and beneath steady

swell has the strongest vertical velocities. We hypothesize this

is due to the formation of vigorous Langmuir structures be-

neath strong, steady swell in the presence of surface stress.

Vertical velocities are somewhat weaker in the case with both

surface stress and growing swell, perhaps because the Stokes

drift is not as strong during active momentum forcing by

surface stress. Nevertheless, the surface stress, growing

swell case—which experiences the strongest horizontal mo-

mentum forcing by both surface stress and swell-transmitted

FIG. 2. Horizontally averaged fields in three LES forced by growing swell with equilibrium amplitude a 5 2m

(solid lines), a pulse of surface stress with no waves (dashed lines) a pulse of surface stress beneath steady waves

with amplitude a 5 1m. Shown are (a) horizontally averaged buoyancy, (b) buoyancy gradient, (c) speed, and

(d) vertical velocity variance normalized by max(u2
+)5 1:653 1025 m2 s22.
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stress—boasts the deepest boundary layer and the strongest

horizontal velocities.

Figure 3 is similar to Fig. 2 but for equilibrium wave am-

plitude a5 2m. Themaximum value of the friction velocity for

a 5 2m is

max(u
+
)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max(›

t
US)

q
’ 8mms21 . (27)

The crucial difference between the results depicted in Fig. 2

and the results in Fig. 3 is that turbulence in the growing swell

simulation mixes the boundary layer to z ’ 232m. This

greater deepening enables greater turbulence production by

shear transmitted by the growing swell, and thus mixing rates

more comparable to the boundary layers driven by surface

stress. The dramatic differences in vertical velocity variance

between the blue lines in Figs. 2d and 3d are evidence that

Langmuir turbulence is more active and effective in the

growing swell simulation with a5 2m than in the growing swell

simulation with a 5 1m. Despite strong vertical velocities

beneath growing swell (blue line, Fig. 3d), which suggest the

presence of Langmuir turbulence (McWilliams et al. 1997;

Sullivan and McWilliams 2010), the boundary layer is deeper

in the surface stress case with no swell (blue and orange

lines, Fig. 3b).

Figure 4 illustrates the temporal evolution of the horizon-

tally averaged x-velocity huLi(z, t) and the horizontally aver-

aged turbulent kinetic energy

E(z, t)5
def
�
1

2
juL 2 huLij2

�
. (28)

The total stress exerted on the boundary layer for the ‘‘growing

waves’’ and ‘‘surface stress, steady waves’’ simulations, which

are plotted in the top right and left panels of Fig. 4, are iden-

tical. Yet because surface stress is concentrated at the top of

the domain, it drives faster, more strongly sheared currents

that transfer more of their energy to turbulent kinetic energy.

The turbulent kinetic energy with surface stress and steady

wave overhead is roughly 3 times larger than with growing

waves and no surface stress. The temporal structure is also

different: a burst of turbulence appears beneath growing waves

around t 5 8 h, while a turbulent layer steadily penetrates the

stratified fluid below the surface stress over the 8-h period of

significant forcing.

e. Alignment of freely decaying coherent Langmuir
turbulence structures perpendicular to Stokes drift

Figure 5 plots a time series of normalized vertical velocity

contours at z 5 22m and z 5 28m for the surface stress,

steady waves case with a5 2m. A black arrow in the center of

each plot indicates the direction of the mean horizontal flow at

each time and depth. The time series shows that the coherent

Langmuir turbulence structures rotate and grow in size over

time, especially after the forcing dies out after t’ (3/4)3 2p/f.

The rotation of the coherent Langmuir turbulence structures

appears fixed to the mean flow direction at early times up to t5
(1/2) 3 2p/f, when momentum forcing is significant. After t 5
(1/2)3 2p/f, and as themean shear weakens, the cell appears to

rotate into alignment with ŷ at around t5 2p/f. Parameter ŷ is

the axis of the background vorticity associated with the sur-

face waves,

2=3uS 5 ›
z
uSŷ . (29)

Thus, the coherent structures align with the direction of mean

shear at early times and during active forcing, as in Sullivan

et al. (2012), but rotate onto the axis of the surface wave

pseudovorticity at later times, during free decay.

4. Turbulent mixing following rapid and gradual surface
wave growth

In this section we reveal some differences between the tur-

bulent evolution of boundary layers forced by the (i) rapid and

FIG. 3. Horizontally averaged fields in three LES forced by growing swell with equilibrium amplitude a 5 2m

(solid lines), a pulse of surface stress with no waves (dashed lines) a pulse of surface stress beneath steady waves

with amplitude a 5 2m. Shown are (a) horizontally averaged buoyancy, (b) buoyancy gradient, (c) speed, and

(d) vertical velocity variance normalized by max(u2
+)5 6:613 1025 m2 s22.
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(ii) gradual growth of a surface wave field. In short, when f 6¼ 0,

the rapid growth of a surface wave field leads to themomentum

distribution uL 5 uS and thus uE 5 0, while the gradual growth

of a surface wave field leads to uL 5 0. We explore the dif-

ference between these two initial conditions on turbulent

mixing driven by surface stress using large-eddy simulations.

a. Rapid and gradual surface wave growth over laminar

boundary layers

If t is a prescribed function of time, the solution to (7) is

UL(t)5UL(0)1 e2ift

ðt
0

eift
0
(t1 ›

t0U
S) dt0 , (30)

FIG. 4. A depth–time plot of the horizontally averaged x-velocity, huLi(z, t), and turbulent kinetic energy E(z, t) defined in (28).

FIG. 5. Contours of vertical velocity normalized by its maximum absolute value at z 5 22m and z 5 28m from the strong ‘‘surface

stress with steady waves’’ simulation (simulation 8 in Table 1), showing the rotation of coherent Langmuir turbulence structures into ŷ. A

thick arrow in the middle of the domain indicates the direction of the horizontally averaged horizontal flow at the same depth as the

vertical velocity. The simulation is actively forced for t ’ 12 h; the flow begins to decay freely after t ’ (3/4) 3 2p/f. At early times, the

coherent structures are roughly aligned with the direction of mean shear, which is aligned with x̂, the direction of forcing. As the current

rotates inertially, so do the coherent structures, though after t’p/f the rotation rate of the structures begins to slow until t’ 2p/f, at which

point the structure axes are fixed to ŷ. Between t5 (5/4)3 2p/f and t5 (3/2)3 2p/f, themean shear rotates through x̂, perpendicular to the
orientation of the coherent structures, which destroys much of the structures’ coherence (not shown). The aftermath of this shearing event

is apparent from comparing the vertical velocity at z522m: much of the coherency evident at t5 (5/4)3 2p/f is destroyed at t5 (3/2)3
2p/f. The strength and coherency of the Langmuir turbulence structures thus pulsates as the near-inertial current rotates, strengthening

when the current is aligned or antialigned with ŷ, and shearing and disintegrating when the mean current is perpendicular to ŷ.
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In the limit that surface waves grow rapidly with t 5 0, such

that ›tU
S 5US

eqd(t) for some equilibrium Stokes transportUS
eq,

(30) is an inertial oscillation,

UL(t)5UL(0)1 e2iftUS
eq . (31)

If surface waves grow over much longer time scales than 1/f, on

the other hand, then UL ’ 0.

A generalization of the vertically integrated result in (31)

occurs beneath surface waves with the time-dependent Stokes

drift field

uS(z, t)5 uS
eq(z)H(t) , (32)

where H(t) is the Heaviside function and uS
eq(z) is the equi-

librium Stokes drift. In this case, the Stokes drift tendency is

›tu
S 5 uS

eqd(t) and Lagrangian-mean velocity field just after t5
0, when the surface wave Stokes drift profile is steady, is

lim
t/01

uL 5 uS
eq(z) . (33)

This flow has zero Eulerian-mean current, and corresponds to

an ocean boundary layer forced by the rapid growth of a sur-

face wave field. If stable, the initial condition (33) develops into

the perfect inertial oscillation

uL(z, t)1 i yL(z, t)5 e2iftuS
eq(z) , (34)

with constant mean kinetic energy

1

2
juLj2 5 1

2
(uS

eq)
2
, (35)

and oscillatory Eulerian-mean kinetic energy

1

2
juEj2 5 (12 cosft)(uS

eq)
2
. (36)

In the absence of sources of vorticity such as rotation, strat-

ification, or viscous stresses, the flow uE 5 0 is stable and

cannot transition to turbulence.2 In stratified surface-wave-

averaged flows, however, stability is guaranteed only when

the Lagrangian-mean Richardson number is greater than 1/4

(Holm 1996),

RiL 5
def ›

z
b

(›
z
uL)

2 1 (›
z
yL)

2
.
1

4
. (37)

b. Large-eddy simulations of turbulent mixing driven
by surface stress following rapid and gradual
surface wave growth

We use large-eddy simulations to analyze the turbulent

mixing of the ocean surface boundary layer following either

rapid surface wave growth leading to (33), or gradual surface

wave growth leading to

uLj
t50

5 0 . (38)

We refer to (33) as the ‘‘excited’’ state, and (38) as the

‘‘resting’’ state.

We choose parameters such that our results resemble those

of McWilliams et al. (1997). McWilliams et al. (1997) uses the

Stokes drift

uS(z)5 e2kza2k
ffiffiffiffiffiffi
gk

p
x̂ , (39)

corresponding to a monochromatic deep water wave with

amplitude a 5 0.8m and wavenumber k 5 0.105m21. The

surface stress and surface buoyancy flux are

T
xz
j
z50

5 3:723 1025 m2 s22 , (40)

q
z
j
z50

522:313 1028 m2 s23 . (41)

Turbulent mixing is mostly driven by the surface stress in (40).

The buoyancy flux in (41), which has a negligible impact on

overall turbulent mixing, serves mainly to counteract the spu-

rious laminarization of the near-surface velocity field in

McWilliams et al. (1997). Our initial buoyancy profile is

bj
t50

5N2z, with N2 5 1:943 1025 s22 , (42)

superposed with small random noise.With ›zb5N2 in (42) and

›zu
S 5 2e2kz(ak)2

ffiffiffiffiffiffi
gk

p
, a 5 0.8m, k 5 0.105m21, and g 5

9.81m s22, RiL’ 0.09 at t5 0 and z5 0 such that the sufficient

condition for instability in (37) is met. The simulations are

performed in a rectangular domain with dimensions 128m 3
128m 3 64m, grid spacing 0.5m 3 0.5m 3 0.25m, resolution

2563, and with sponge layers of the form (21).

We refer to cases with a 5 0.8m in (39) as ‘‘13’’ cases, and

run two additional cases with excited and resting initial con-

ditions and the same boundary conditions, except with 4 times

stronger Stokes drift fields

uS
43 5 4uS , (43)

corresponding to surface waves with twice the amplitude. We

finally run a ‘‘reference’’ simulation with uS 5 0. These five

simulations are labeled A–E in Table 1. A visualization of

vertical velocity in the x–y plane after two inertial periods such

that t5 23 2p/f, at a depth of z524m, and for the reference

case, 13excited case, and 13 resting case, are shown in Fig. 6.

Both the 13 excited and 13 resting cases exhibit the coherent

structures of well-developed Langmuir turbulence (Sullivan

and McWilliams 2010).

The main result of this section is that the excited initial

conditions in (33) provide a reservoir of near-inertial shear that

quickly transitions to turbulence and rapidly deepens the

boundary layer at early times. This rapid early deepening,

compared to the more gradual evolution of boundary layers

initialized with the resting state (38), is illustrated in Figs. 7 and

8, which depict the horizontally averaged buoyancy, vertical

buoyancy gradient, and Lagrangian-mean velocity fields huLi

2While the wave-averaged momentum is uL, the wave-averaged

vorticity is = 3 uE [see Bühler (2014) or chapter 2.4 in Wagner

(2016)]. Thus, without a source of vorticity, a flow with uE 5 0 is

irrotational and cannot transition to turbulence.
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and hyLi after a quarter of an inertial period [blue lines, t 5
(1/4)3 2p/f] and after two inertial periods (orange lines, t5
2 3 2p/f) in the 13 and 43 cases, respectively. The effect of

13 excited initial conditions is modest—the boundary layer

is approximately 20% deeper than the 13 resting case at t5
(1/4) 3 2p/f—and the two boundary layer depths become

similar by t 5 2 3 2p/f as boundary layer deepening slows.

Because the surface wave field is stronger in the 43 cases, the

effect of initial enhanced shear in the excited case is more dra-

matic: after 1/4 of an inertial period, the boundary layer is almost

twice as deep in the excited simulation as in the resting and

reference simulations. The imprint of the initial excited state is

still evident even at t 5 2 3 2p/f, at which point the excited

boundary layer is still deeper than the boundary layer spun up

from a resting state. We conclude with the visualization of the

evolution of vertical velocity in Fig. 9 from the 43 resting and

excited experiments at the early time t5 (1/4)3 2p/f. In the 43
excited simulation, turbulence penetrates deeper and regions of

organized vertical velocity are stronger, reflecting both the

greater energy available for turbulent mixing in the excited ca-

ses, and the organization of the more energetic turbulence into

stronger coherent structures.

5. Discussion

The simulation illustrated by Fig. 1 shows that the growth

of surface waves can excite sheared near-inertial waves and

drive turbulence and mixing that deepens the ocean surface

boundary layer. The simulations in section 3 show that, more

generally, the partitioning of ocean momentum forcing into a

FIG. 6. Contours of vertical velocity in the x–y plane and at a depth z524m in the reference, 13 excited, and 13
resting large-eddy simulations. Simulation parameters are detailed in Table 1.

FIG. 7. Horizontally averaged fields in 13 large-eddy simulations: (a) buoyancy, (b) buoyancy gradient, (c) speed, and (d) vertical

velocity variance. Excited initial conditions (dashed lines) cause an initial mixing event to deepen the boundary layer compared to resting

initial conditions (solid lines). This is most evident in the buoyancy gradient profiles at t5 (1/4)3 2p/f [blue lines in (b)]. By t5 23 2p/f,

memory of the initial condition is lost and the buoyancy, buoyancy gradient, and vertical velocity variance profiles are similar between the

excited and resting case [orange dashed and solid lines in (a), (b), and (d)]. The horizontal velocities in the excited case still exhibit faster

speeds [orange dashed and solid lines in (c)] due to the excitation of a strong inertial oscillation at t5 0. The differences between the ‘‘no

waves’’ and ‘‘excited’’ cases are discussed in McWilliams et al. (1997). Figure A1 reproduces some of the plots from McWilliams et al.

(1997). Simulation parameters are detailed in Table 1.
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surface-concentrated component and a depth-distributed

component mediated by growing swell impacts the ensuing

mean currents and turbulent evolution and deepening of the

ocean surface boundary layer. The simulations in section 4

show that the rate at which swell grows also affects the evo-

lution of the boundary layer, a fact that is well appreciated in

the context of surface-concentrated momentum forcing, but

less so for swell-mediated momentum forcing.

The distinction betweenmomentum transfer via equilibrium

range waves and viscous stress near or at the surface, and

depth-distributed momentum transfer via the growth of swell

may be important when ›tU
S comprises a significant fraction of

the total water-side stress t 1 ›tU
S. For example, Fan et al.

(2009) find that ›tU
S rises to 25% of the total stress in strongly

forced hurricane conditions. However, depending on the

quantity of interest, the differences between boundary layers

driven by t and boundary layers driven by ›tU
S are probably

small in typical scenarios when ›tU
S is small compared to t.

This is especially true in boundary layers deeper than the

longest swell components, where preexisting turbulence ca-

pably converts swell-deposited kinetic energy to turbulent

kinetic energy.

The unimportance of the depth dependence of atmospheric

momentum forcing under typical conditions has implications

for parameterizations of atmospheric momentum forcing in

general circulation models. Current general circulation models

do not partition atmospheric momentum forcing into the two

components in (7). Instead, general circulation models impose

atmospheric momentum forcing through a surface stress. This

approximation, which is sensible because 90%–95% of the

stress exerted on the ocean by the atmosphere enters via

equilibrium range waves with very short decay scales (Melville

1996), is further justified by our results, which suggest that the

depth dependence of the remaining 5%–10% of the stress

exerted on the ocean is relatively unimportant except in very

shallow boundary layers. More realistic observations and

FIG. 8. As in Fig. 7, but for 43 large-eddy simulations with 43 stronger wave fields and excited initial conditions. The difference between

the boundary layer depth at t5 (1/4)3 2p/f for the resting and excited cases is dramatic, as evidenced by the blue dashed and solid lines in

(b). Unlike Fig. 7, memory of the initial mixing event persists at t5 23 2p/f. The resting case exhibits stronger vertical velocities than the

excited case at t 5 2 3 2p/f, especially at the base of the boundary layer. The reason for this is unknown.

FIG. 9. Comparison of the vertical velocity at t 5 (1/4) 3 2p/f in two large-eddy simulations with resting and excited initial conditions.
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modeling are warranted to further evolution of boundary

layers forced by both surface stress and swell growth.

Acknowledgments. This paper’s seed was planted by ar-

guments between the lead author and Sean R. Haney about

the intricacies and obscurities of Stokes drift while Sean was

a postdoctoral researcher at the Scripps Institution of

Oceanography. Besides being an amazing surfer and a

generous friend, Sean had a unique ability to make argu-

ments fun and productive. Sean passed away too soon due to

illness on 1 January 2021 and is deeply missed. This paper is

dedicated to him. Be careful, Sean.

In addition to Sean’s inspiration, this work benefited from the

constructive criticism of two reviewers and amiable banter with

Stephen Belcher, Keaton Burns, Navid Constantinou, Baylor

Fox-Kemper, Ramsey Harcourt, Qing Li, Brodie Pearson,

Nick Pizzo, Brandon Reichl, and William Young. This work

was supported by the generosity of Eric andWendy Schmidt by

recommendation of the Schmidt Futures program, and by the

National Science Foundation under Grant AGS-6939393.

APPENDIX A

Subfilter Fluxes in Wave-Averaged Large-Eddy
Simulations

Our large-eddy simulations of (9)–(11) use a downgradient

hypothesis tomodel the subfilter stress tensor T ij appearing in (9),

T
ij
522(n

e
1 n)�L

ij 1 nd
3j
›
z
uS , (A1)

where n is the molecular viscosity, ne is an eddy viscosity that

is a nonlinear function of resolved velocity field, dij is the

Kronecker delta, and

�L

ij 5
def 1

2
(›

i
uL
j 1 ›

j
uL
i ) , (A2)

is the Lagrangian-mean rate of strain tensor. The divergence

= � T in (9) is written ›jT ij in indicial notation. The subfilter

flux of buoyancy in (10) is, similarly,

q52k
e
=b , (A3)

where ke is the eddy diffusivity of buoyancy.

a. The Lagrangian-mean strain tensor and kinetic
energy dissipation

Typical models for large-eddy simulations of (9)–(11)

(Skyllingstad and Denbo 1995; Polton and Belcher 2007;

Yang et al. 2015; McWilliams et al. 1997; Noh et al. 2004;

Harcourt and D’Asaro 2008) use a subfilter stress tensor T ij

proportional to the Eulerian-mean rate of strain. Our sub-

filter model, however, uses the Lagrangian-mean rate of

strain �L

ij in (A1). We note in advance that the following

discussion above may not have significant practical import:

the agreement shown in Fig. A1 between our simulations

and the simulations of McWilliams et al. (1997), which use

�E

ij , suggests that the differences between models using �L

ij

and �E
ij are small when resolved turbulent fluxes dominate

over turbulent fluxes modeled by T ij.

The first important assumption we make is that the terms

proportional to molecular viscosity n in (A1) are negligible.

This is justified after the fact by the results of our large-eddy

simulations, where ne is roughly 102–103 times larger than

n within the bulk of the boundary layer, and where j›zuSj is
largely similar to j›zuLj. Note that neglecting terms propor-

tional to molecular viscosity also means we neglect the term

n›zu
S in (A1) associated with the molecular dissipation of the

surface wave field. This term is crucial for describing streaming

flows in viscous boundary layers and other viscous surfacewave

phenomena at low Reynolds number (see, for example,

Longuet-Higgins 1953). In this paper, we assume that molec-

ular dissipation of the surface wave field has a negligible effect

on boundary layer evolution. This assumption is almost always

FIG. A1. (a)Horizontally averagedEulerian-mean x-velocity huEi, (b) horizontally averaged y-velocity hyEi5 hyLi,
(c) horizontally averaged vertical variance h(wL)2i, and (d) horizontally averagedLagrangian-mean huLi. Here, hyEi5
hyLi because the Stokes drift is in x, such that uS 5uSx̂. The vertical coordinate z/h is height normalized by h, the depth

of the maximum horizontally averaged buoyancy gradient such that ›zhbi(h) 5 max (›zhbi). Panels (a) and

(b) reproduce Fig. 2 in McWilliams et al. (1997). Panel (c) reproduces Fig. 6 in McWilliams et al. (1997).
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justified at the high Reynolds numbers of typical ocean surface

boundary layers.

The second important assumption is that the Lagrangian-

mean kinetic energy, (1/2)juLj2, undergoes a Kolmogorovian

forward cascade through a spectral inertial range en route to

the small, unresolved scales of molecular dissipation. The as-

sumption of an inertial range for spectral fluxes of Lagrangian-

mean kinetic energy follows from the conservation of

Lagrangian-mean kinetic energy in (15) in the absence of

stratification, dissipation, or forcing by nonzero ›tu
S. We

note that an alternative hypothesis that the Eulerian-mean

kinetic energy, (1/2)juEj2, undergoes a forward cascade

through an inertial range is more difficult to justify because

(1/2)juEj2 is not conserved [for example, Eq. (36) shows that

(1/2)juEj2 oscillates between 0 and 2juLj2 in an adiabatic

inertial oscillation depending on whether uL is aligned or

antialigned with uS]. The ‘‘turbulence-induced anti-Stokes’’

flow observed in Pearson’s (2018) large-eddy simulations

is evidence that turbulent momentum fluxes tend down

Lagrangian-mean gradients, and thus tend to dissipate

Lagrangian-mean kinetic energy.

Inserting T ij 522ne�L

ij into (9), and maintaining b5 ›zu
S5

0, we find that
Ð
uL � (9)dV yields

d

dt

ð
1

2
juLj2 dV52

ð
2n

e�
L

ij�
L

ij dV . (A4)

The modeled dissipation rate of Lagrangian-mean kinetic en-

ergy on the right side of (A4) is positive definite because ne. 0

by its definition below in (A5). As a result, T ij in (A1) models a

forward cascade of turbulent energy across the filter scale and

toward molecular dissipation.

b. Eddy viscosity and eddy diffusivity

We use the anisotropic minimum dissipation model (Rozema

et al. 2015; Abkar et al. 2016; Verstappen 2018) described by

Vreugdenhil and Taylor (2018) for the eddy viscosity ne in (A1)

and eddy diffusivity ke in (A3). The terms ne and ke are defined

to be strictly nonnegative,

n
e
5
def

max(nye, 0), and k
e
5
def

max(ky
e, 0) , (A5)

where the nonlinear functions nye and ky
e are

nye 5
def

2CD2
(›̂

k
û
i
)(›̂

k
û
j
)
^�L

ij

(›̂
‘
û
m
)2

, and ky 5
def

2CD2 (›̂kûi
)(›̂

k
b)›̂

i
b

(›̂
‘
b)2

.

(A6)

In (A6), D is the filter width defined via

1

D2
5
def 1

3

 
1

D2
x

1
1

D2
y

1
1

D2
z

!
, (A7)

in terms of the potentially anisotropic x, y, z grid spacings Di.

The hats in (A6) denote the scaled quantities

›̂
i
5
def

D
i
›
i
, û

i
5
def uL

i

D
i

, and Ŝ
L
5
def 1

2
(›̂

j
û
i
1 ›̂

i
û
j
) . (A8)

The termC in (A6) is amodel constant. For simulationsA–E in

Table 1, which are reported in section 4, we set C 5 1/12 fol-

lowing Verstappen (2018) and Vreugdenhil and Taylor (2018).

For simulations 1–8 in Table 1 and reported in section 3, we

implement3 a model that increases C from 1/12 to 2/3 at z 5 0

over a scale of 4Dz 5 1m,

C(z)5C
I
1 ez/d(C

0
2C

I
) , (A9)

where CI 5 1/12, C0 5 2/3, and d 5 1m. The model constant

enhancement in (A9) is necessary for obtaining smooth

buoyancy profiles near the surface during the spinup simula-

tions 1 and 6 in Table 1. We find that without an enhancement

of the kind in (A9), the eddy diffusivity ke is too small near z5
0 during free convection, which prevents a smooth transition

between the boundary-adjacent cells where the unresolved

diffusive flux q dominates, and the turbulent interior where

advective fluxes ub in (10) control the evolution of the buoy-

ancy distribution.

Our use of uL
i in (A8) is justified by deriving ne and ke from the

Lagrangian-mean velocity gradient energy equation (Rozema

et al. 2015). In this derivation, the term 2(= 3 uS) 3 uL in (9)

arises as a ‘‘transport term’’ in the velocity gradient energy

equation, and thus, similar to Coriolis accelerations, does not

affect the form of ne (Abkar et al. 2016).

c. Model validation

Figure A1 plots the horizontally averaged velocity and

vertical variance from the 13 excited case, reproducing parts

of Figs. 2 and 6 from McWilliams et al. (1997). Our results are

similar despite the differences between our subfilter flux model

and McWilliams et al.’s (1997).

APPENDIX B

Lagrangian-Mean Form of the Craik–Leibovich Equations

The Eulerian-mean form of the Craik–Leibovich momentum

equation (Leibovich 1977; Suzuki and Fox-Kemper 2016) is

›
t
uE 1 (uE � =)uE 2 uS 3 (=3 uE)1 f ẑ3 uL 1=f5bẑ ,

(B1)

where

f5
def

p1
1

2
juSj2 1 uS � uE , (B2)

p is the Eulerian-mean pressure, and uS 3 (= 3 uE) is the

‘‘vortex force.’’ Some algebraic gymnastics lead from (B1) to

(9). Starting with the vector identity

uL 3 (=3uS)1uS 3 (=3uL)5= � (uS � uL)2 (uS � =)uL

2 (uL � =)uS ,

(B3)

3 See https://github.com/glwagner/WaveTransmittedTurbulence/

blob/master/src/les.jl.
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and subtracting both uS 3 (= 3 uL) 5 uS 3 (= 3 uE) 1 uS 3
(= 3 uS) and

uS 3 (=3 uS)5=

�
1

2
juSj2

�
2 (uS � =)uS , (B4)

yields the identity

uL 3 (=3 uS)1uS 3 (=3uE)1 (uS � =)uE 1 (uL � =)uS

2=

�
1

2
juSj2 1 uS � uE

�
5 0 . (B5)

Equation (B5) then implies that

(uE � =)uE 2uS 3 (=3uE)1=f5 (uL � =)uL

2 (=3 uS)3uL 1=p ,

(B6)

where we have used (B2).

With the identity (B6), ›tu
E 5 ›tu

L 2 ›tu
S, and the as-

sumption = � uS 5 0 (valid for weakly modulated waves, as

discussed in section 2), we can convert the Eulerian-mean form

of the Craik–Leibovich equation (B1) and the continuity

equation = � uE 5 0 into their Lagrangian-mean counterparts

(9) and (11).

Finally, we note that (B1) is derived by Leibovich (1980) from

the generalizedLagrangian-meanmomentumequation presented

in Theorem I of Andrews and McIntyre (1978). Thus, Leibovich

(1980) provides a link betweenAndrews andMcIntyre (1978) and

our (9)–(11). As discussed by Leibovich (1980), the pseudomo-

mentumappearing inTheorem IofAndrews andMcIntyre (1978)

and the surface wave Stokes drift uS are nearly equivalent the

scenarios we consider with relatively slow background rotation

and slowly modulated waves.
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