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1 Introduction

This lecture is the first on Gaussian processes but continues our discussion of nonparametric Bayesian
methods. Compared to other methods discussed previously, the focus of the reading was how to apply
Gaussian processes (GPs) to prediction problems and machine learning (ML). The benefit of GPs for ML
is that we can consider an infinite set of possible functions to model the data and make predictions. As we
observe more data, the GP’s posterior predictive distribution gets updated to reflect the new information.
The reading also introduces a covariance structure through the GP’s kernel that allows us to model the
data flexibly using a wide variety of kernels to make predictions. GPs also easily provide estimates of the
uncertainties in its predictions.

The reading by Rasmussen and Williams (2005) introduces GPs using two fundamentally equivalent views,
the weight space view and the function space view. The weight space view learns parameters for a class of
functions and is introduced by showcasing how it can be applied to fit a Bayesian linear model to some data.
The function space view imposes a prior on all possible functions via a choice of GP kernel and is showcased
by fitting a GP to some data points. The reading shows that the weight space view with a specific basis
function is equivalent to the function space view with appropriate kernel.

2 Weight Space View

The goal of weight space view is that we are interested in making inferences on the conditional distribution
of the target variable y given the inputs x. There is no attempt made to try to model the true distribution
of the inputs. The weight space view has benefits in that it is easily understood by non-practitioners and
easy to implement. The reading starts by analyzing a Bayesian linear model. It then shows that we can
increase the expressiveness of the Bayesian linear model by projecting the inputs into a higher dimensional
feature space and apply the linear model in this higher feature space.

2.1 Bayesian Linear Model

In a Bayesian linear model we model the input/target relationship as

y = XTw + ϵ where ϵ ∼ N (0, σ2
nI), w ∼ N (0,Σp) (1)

We have set a Gaussian prior on the weight vector with zero mean and covariance matrix Σp. The motivation
for this prior is that it makes the model analytically tractable. σ2

n is the variance of the noise in measurements
of y values. The posterior distribution of the weights is given as
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w|X, y ∼ N (σ−2
n A−1Xy,A−1) (2)

We are ultimately interested in making predictions for new data. To compute the predictive distribution we
average over all possible parameters values weighted by their posterior probability (above). We then make
predictions for new observations by drawing from this distribution. Figure 2.1 in the reading shows the
prior, likelihood, posterior, and predictive distribution generated from the weight space view. The predictive
distribution is

f∗|x∗, X, y ∼ N
(
wxT

∗ , x
T
∗ A

−1x∗
)

(3)

where w = σ2
nA

−1Xy

As mentioned, a drawback to the linear model is that lacks flexibility to model complicated relationships
between the input and target.

2.1.1 Bayesian Linear Model using Basis Functions

An idea to overcome the shortcomings of the rigidness of the linear model to project the inputs into higher
dimensional space using basis function ϕ and then performing a Bayesian linear regression on the trans-
formed features. The predictive distribution then becomes a complicated function of ϕ and the user has
to make decisions on how to chose ϕ(X). Additionally, the predictive distribution as a function of ϕ(X) is
computationally very difficult as the A matrix requires to be inverted.

The paper introduces kernels to replace basis functions. We can reformulate the predictive distribution using
kernels and in the process remove ϕ and A from the distribution. This is useful when it is easier to compute
the kernel than computing the transformations of the feature itself. The kernel is also thought of as the
covariance function which is explained later on.

3 Function Space View

In the function space view, a GP is used to describe a distribution over functions. Once fit, the GP’s
posterior provides a distribution over functions that fit the data. The function space view places a prior on
all functions allowed by the Gaussian Process kernel. GPs derive their name from the formal definition that
a GP is a collection of random variables, any finite number of which have a joint Gaussian distribution.

3.1 Gaussian processes in the function space view

A GP describing a real process f(x) is completely specified by its mean functionm(x) and covariance function
k(x, x′)

f(x) ∼ GP(m(x), k(x, x′)) (4)

m(x) = E[f(x)] (5)

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (6)
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Fitting a GP to data then involves placing a prior on m and k then conditioning the joint Gaussian prior
distribution on the observations to obtain a posterior predictive distribution over the functions that describe
the data. The reading assumes m = 0 for simplicity. The conditioning (or fitting) computationally involves
inverting an n×n square matrix whose where n is the number of training data points. So the computational
cost scales the same as matrix inversion, which is nominally O(n3) but in practice may be faster due to the
endless software and hardware developments made to speed up matrix inversion.

With this definition, it can be shown that the weight space view is equivalent to a function space view defined
as a GP

f(x) ∼ GP
(
0, ϕT (x)Σpϕ(x

′)
)

(7)

For example, the Bayesian Linear model is equivalent to a functional space representation with a linear
covariance function.

3.2 Covariance kernel priors for Gaussian processes

Our prior belief about the data can inform the choice of prior covariance kernel k(x, x′). For example, the
squared exponential kernel represents a prior on all infinitely differentiable functions

k(x, x′) = σ2 exp

{
−1

2

(
|xp − xq|

ℓ

)2
}

(8)

where σ is the scale factor and ℓ is the length scale of the kernel. Kernels can be added and multiplied to
create more sophisticated kernels.

Note that we are able to model the covariance between the outputs as a function of the inputs. For the
squared exponential function, when inputs are very close in space, the covariance approaches σ2 and decreases
as the distance gets larger. GPs for ML exploit this covariance structure in order to make predictions.

3.3 Making prediction with noise-free observations

Once a prior kernel has been picked, the GP can be fitted/conditioned on data rather easily. Assuming there
is no measurement noise in the data, the joint distribution over the training outputs f and the test outputs
f∗ according to the prior is

[
f
f∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
(9)

which leads to a noise-free predictive distribution

f∗|X∗, X, f ∼ N
(
K(X∗, X)K(X,X)−1f,K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗)

)
(10)

Figure 1 shows an example of fitting a GP to some data using the noise-free assumption.
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Figure 1: (Left) Three samples from a GP prior using a squared exponential kernel. The red and green curves
are plotted to show that samples from a GP are infinite dimensional and infinitely smooth while the green
dots show that GPs are made tractable by sampling at a finite number of points (bringing it down to a finite
dimensional object). (Right) After conditioning on some data (the black + signs) sampling from the GP
posterior produces functions that go through our data (assuming zero measurement noise) and interpolate
smoothly in between leading to natural confidence intervals (gray shading). This is taken from figure 2.2 of
Rasmussen and Williams (2005).

3.4 Making predictions with noisy observations

When you do not have access to values of f(x) themselves, but only noisy observations of the form y = f(x)+ε
where ε is additive independent identically distributed Gaussian noise with variance σ2

n, the prior then
becomes Cov(yp, yq) = k(xp, xq) + σ2

nδpq or Cov(y) = K(X,X) + σ2
nI where δpq is the Kronecker delta

function. Conditioning on the data, the joint distribution of the observed target values and the function
values at the test locations under the prior becomes

[
y
f∗

]
∼ N

(
0,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
(11)

with the noisy predictive distribution f∗|X, y,X∗ being given by equations (2.22)–(2.24) of Rasmussen and
Williams (2005).
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